Application of System-Identification Techniques to Health Monitoring of On-Orbit Satellite Boom Structures

Yingtao Liu, Seung Bum Kim, and Aditi Chattopadhyay
Arizona State University, Tempe, Arizona 85287
and
Derek Doyle
U.S. Air Force Research Laboratory, Kirtland Air Force Base, New Mexico 87117

DO: 10.2514/1.51818

The integration of composites into spacecraft is challenged by the risk of damage initiation and propagation during storage, launch, and service life. Elastically deployable composite booms are being developed for space utility. Matrix cracks are considered a primary form of damage caused by packaging before launch. However, while on orbit, most damages are induced by the environmental effects on the polymers. A well-developed structural health monitoring system will provide information for the dynamic control of the satellite and the condition of the deployable mechanisms on the space vehicle. A structural health monitoring methodology, based on the system-identification techniques, is proposed to identify the structural degradation in laminated composite booms. Nondestructive evaluation techniques, frequency-response analysis and autoregressive with exogenous input models are used to approximate the transfer functions between input and output sensing signals. Structural degradation is identified by examining the change of transfer functions at different storage states. A single-input/single-output approach is adopted in this paper. The proposed methodology is validated through experimentation in which matrix cracking is gradually induced by packaging the sample.

I. Introduction

ADVANCED carbon/epoxy composites have been widely used for a variety of structural components in spacecraft, due to their light weight, dimensional stability, and optimized mechanical properties [1]. On-orbit satellite systems operate in a harsh environment and the structural degradation of composite components can be caused by various sources such as atomic oxygen, ultraviolet (UV) radiation, proton and electron radiation, vacuum, and thermal cycling [2-4]. Although the coefficient of the thermal expansion (CTE) of composites is commonly near zero and significantly less than typical aluminum, composites are just as vulnerable to the environmental influences. High vacuum pressure can lead to material outgassing, UV radiation can deteriorate the surface matrix and discolor the surface, changing the thermal performance, and debris can shatter supports, as was the case for the Cerise microsatellite that had a catalogued item severed and locally vaporized by impact on its Earth-pointing boom [5]. Like most space mishaps, the system was recoverable, but difficult to diagnose.

Damage in composite satellite structures, such as matrix cracks and matrix-fiber debonding, causes the degradation of structural stiffness and can affect the dynamic response of the satellite system during maneuvers such as slewing or deployments. Structural degradation needs to be monitored to update the dynamic control system of the spacecraft. Developing a structural health monitoring (SHM) system for monitoring the flexible structures of a satellite, such as the composite booms, will allow the satellite guidance, navigation, and control systems to incorporate any quantified stiffness degradation values into future functions. A properly designed SHM system will be able to detect, classify, and localize damage and determine if the composite components of the satellite will continue to perform safely and sufficiently. Price et al. [6] developed an integrated health monitoring system for real-time sensing of impact damages in aerospace vehicles using piezoelectric polyvinylidene fluoride transducer-based passive sensing and a self-organizing approach. Prosser et al. [7] compared a variety of sensor types, such as fiber optic sensors, carbon nanotube sensors, and acoustic emission sensors, and reported the data processing techniques for the sensor placement optimization and the damage identification of composite components in space vehicles. Zagrai et al. [8] detected and located loose bolts in complex space structures with a large number of bolted...
joints using the embedded ultrasonic acoustic–elastic method, and
the integrity of the bolted joint was evaluated by the stress-induced
phase shift in the recorded elastic wave signals. Liu et al. [9]
developed a condition-based SHM and prognosis methodology for
composite structures under complex loading conditions. However,
few on-orbit influences are considered in the previous literature. A
SHM system for on-orbit composite components needs to be used
not only to determine the status of a satellite structure before launch,
but also for the on-orbit detection of damage. This can be seen in
the case of the deployable antenna of the Mars Advanced Radar for
Subsurface and Ionosphere Sounding (MARSIS) project on Mars
express. The deployable antenna was made with glass fibers and
collapsed in a manner to deploy using stored elastic energy. When
it was time to deploy on orbit, the risk was considered unacceptable
and it was never released, due to the concerns of deployment and
how guidance and other functioning instrumentation would be
impacted, along with the inability to diagnose any conditions after
deployment [5].

Although significant research on SHM of composites has been
reported in the last decade, most of the published work focuses on the
macroscale damage, such as delamination and impact damage. Well-
developed SHM techniques, including acoustic emission methods,
have also been shown to be effective in detecting macroscale damage in
composites. However, the dominant structural degradation mode
induced into a flexible composite boom before launching is matrix
cracking. As shown in Fig. 1, the carbon-fiber-reinforced plastics
boom in the stowed configuration and the fully deployed solar sail
is developed by the DLR, German Aerospace Center. Both the CFRP
booms and solar sail membranes are used as critical structural
components of the propulsion system for the synthetic aperture radar
satellites. When the solar sail membranes and CFRP boom are
packed into a small volume, matrix cracking is introduced to the
boom structure, due to the flattening and wrapping procedure. The
detection of matrix cracking in composites requires more sensitive
and reliable techniques. However, research in monitoring micro
matrix cracks in composites is still in its infancy. In addition, most
current nondestructive evaluation techniques, such as x-ray, ultra-
sonic scan, and radiography, are costly, time-consuming, labor-
intensive and do not satisfy the responsive ground-based or on-orbit
service. D’Amato et al. [12] used a global method for analyzing an
unknown input signal through sensor-only noncausal blind iden-
tification. In that effort, which examined the same structure used in
this paper, the sensing was done on the deployment mechanism,
rather than on the boom, in order to reduce the complexity of
eventual SHM integration. The integrity of the boom was then
inferred from the accelerometer data on the rotating hub and analyzed
as a pseudo frequency response. However, through reducing the
complexity, the sensitivity of the system to adequately account for
any level of stiffness loss was decreased. To compensate for this
problem, researchers implemented adaptive model refinement using
retrospective cost optimization. This provided significantly better
insight into the degradation of the system. However, when inferring

structural integrity of a component through analysis of a different
component, there must be the assumption that there are no other
changes in the system chain between both elements that may result in
a false analysis of the state of the booms. A SHM system that
automatically monitors and detects on-orbit degradation of com-
posite components is required for the reliable use of composite
satellite structures.

System-identification techniques have been used for structural
evaluation of both metallic and composite structures to interpret data
and extract diagnostic features. The extraction of damage-sensitive
features from experimental measurements or simulation, and the
statistical analysis of these features determine the current state of the
system’s health. Nonparametric models (such as frequency-response
methods) and parametric models (such as state-space models) are the
two main approaches for system-identification techniques. Park et al.
[13] used an inverse method for identifying the damage location and
the impact force–time history on composite plates using the state-
space estimation techniques. The transfer function at any point was
constructed by interpolating four neighboring known transfer
functions. However, the actual damage caused in the composite
samples by the impact loading was not clarified. Different types of
structural damage, such as fiber breakage and delamination, can be
introduced by different impact velocities and energies. The nature of
impact damage introduced into their composite specimens needs to
be demonstrated, and the method also needs to prove functionality on
complicated structures. Sohn et al. [14] presented a damage feature
extraction approach by combining the autoregressive and auto-
regressive with exogenous input (ARX) models and applied the two
techniques to fiber optic strain-gauge data obtained from two
different structural conditions of a surface-effect fast patrol boat.
Although the damage features were identified by combining the two
models, the procedure needs to be examined with composite structures
and under more operational conditions before it can be applied as a
SHM system for composite components. Mohanty et al. [15]
proposed an unsupervised system-identification-based techniques to
estimate the time-series fatigue damage states for metallic materials.
To estimate the nonparametric damage state, ultrasonic broadband
active sensing and correlation analysis were used. In most cases, the
system-identification techniques showed acceptable performance for
visible damage, such as cracks in metal and delamination in
composites.

In this paper, a system-identification-based SHM technique is
proposed to quantify the structural degradation of the composite
booms used in satellite applications, as shown in Fig. 2. Low-
frequency broadband sweep excitations are applied to the modeled
samples using macrofiber composite (MFC) transducers. Structural
degradation and changes in dynamic response of the samples are
determined from the frequency response of measured actuator and
sensor signals. The transfer functions of single-input/single-output
(SISO) approach are estimated using the ARX model to identify the
damage levels. A damage index is defined to describe the structural
degradation condition in the booms. Both local and global structural

Fig. 1 Photographs of a) the deployable DLR CFRP boom and b) solar sail [10,11].
degradation estimations are completed by using the MFC data collected from different positions. The proposed method has been validated experimentally.

II. Structure Health Monitoring Framework for a Satellite Structure

A. Frequency-Response Method for System Identification

The frequency-response method for system identification characterizes the response of the composite boom subject to a sweep excitation. The frequency response is estimated using spectral analysis and can be expressed in a cross-correlation function and autocorrelation function. For time-domain input signal $x(t)$ and output signal $y(t)$, the spectral densities $S_{xy}(j\sigma)$ and $S_{xx}(j\sigma)$ of the relevant measured input and output are written as [16]

$$S_{xy}(j\sigma) = \tilde{y}(j\sigma)\tilde{x}^\star(j\sigma)$$ (1)
$$S_{xx}(j\sigma) = \tilde{x}(j\sigma)\tilde{x}^\star(j\sigma)$$ (2)

where $\tilde{x}(j\sigma)$ and $\tilde{y}(j\sigma)$ are the finite Fourier transforms of the relevant measured input and output, and $\tilde{x}^\star(j\sigma)$ is the conjugate of $\tilde{x}(j\sigma)$.

By applying the finite Fourier transform to measured input and output, an estimate of the frequency-response function can be written as

$$G(j\sigma) = \frac{S_{xy}(j\sigma)}{S_{xx}(j\sigma)} = \frac{\tilde{y}(j\sigma)\tilde{x}^\star(j\sigma)}{\tilde{x}(j\sigma)\tilde{x}^\star(j\sigma)}$$ (3)

where the frequency-response function, $G(j\sigma)$, is a complex vector. Both input/output magnitude ratio and phase shift are considered. The magnitude ratio $R(\sigma)$ and phase $\phi(\sigma)$ can be expressed as

$$R(\sigma) = \sqrt{\text{Re}[G(j\sigma)]^2 + \text{Im}[G(j\sigma)]^2}$$ (4)
$$\phi(\sigma) = \tan^{-1}\left(\frac{\text{Im}[G(j\sigma)]}{\text{Re}[G(j\sigma)]}\right)$$ (5)

The frequency-response method constitutes a describing function that linearly characterizes the behavior of the input-to-output MFC transducers. If the transfer function of the entire structure changes due to the induced matrix cracking, the Bode plot of input/output sensor measurements will provide guidance for the future construction of a system transfer-function model. Further details are explained later in the paper.

B. Transfer-Function Estimation Using the ARX Model

In this study, an ARX model is used to estimate the transfer function of the composite active sensing system. Traditional autoregressive and autoregressive moving-average models are fitted to the sensing signals (output signals) and do not consider the excitation signals (input signals). The ARX model considers the excitation signals as additional information in a time-series model. The input/output model can be reasonably estimated using the ARX model and the linear least-squares method [17,18]. As a typical example of the black-box model, the model is widely used, due to its simplicity. Ignoring the estimation error, the ARX model that describes the relationship between input $x(t)$ and output $y(t)$ is shown in Eq. (6) [19]:

$$y(t) + a_1y(t-1) + \cdots + a_{n}y(t-n) = b_1x(t-1) + \cdots + b_mx(t-m)$$ (6)

where a_i and b_i are the parameters of the ARX model, n is the number of poles, and m is the number of zeros. Once m and n are calculated, the ARX can be written as the ARX (m, n) model. The model assumes that the sampling interval is uniform in the time domain. To determine the next output value given by previous observation, it is easier to write Eq. (6) as

$$y(t) = -a_1y(t-1) - \cdots - a_{n}y(t-n) + b_1x(t-1) + \cdots + b_mx(t-m)$$ (7)

The parameters of the ARX model, a_i and b_i, are calculated from the sensor measurements $x(t)$ and $y(t)$ using the linear least-squares method. For a more compact notation, these adjustable parameters can be written in a vector form:

$$\theta = [a_1, \ldots, a_n, b_1, \ldots, b_m]^T$$ (8)

and the previous input/output measurement can be written as

$$\psi = [-y(t-1), \ldots, -y(t-n), x(t-1), \ldots, x(t-m)]^T$$ (9)

According to Eq. (9), the output estimation of the ARX model is

$$y(t) = \psi^T(t)\theta$$ (10)

Note that the calculation of the next output measurement from previous data in vector ψ depends on all the parameters in vector θ. The calculated value $\hat{y}(t|\theta)$ is different from the real measurement $y(t)$:

$$\hat{y}(t|\theta) = \psi^T(t)\theta$$ (11)

All the unknown parameters in vector θ are calculated using the least-squares method. From the recorded input/output measurement
R^N, the unknown parameters can be calculated by minimizing the error $E(\theta, R^N)$ between the real output measurement $y(t)$ and the calculated output $\hat{y}(t|\theta)$. Here,

$$R^N = [x(1), y(1) \cdots x(N), y(N)]$$

(12)

$$E(\theta, R^N) = \frac{1}{N} \sum_{i=1}^{N} (y(t) - \hat{y}(t|\theta))^2 = \frac{1}{N} \sum_{i=1}^{N} (y(t) - \varphi^2(t|\theta)\theta)^2$$

(13)

Set the derivative of $E(\theta, R^N)$ to zero,

$$\frac{d}{d\theta} E(\theta, R^N) = \frac{2}{N} \sum_{i=1}^{N} \varphi(t)\psi(t) - \frac{2}{N} \sum_{i=1}^{N} \psi(t)\varphi^2(t|\theta)\theta = 0$$

(14)

resulting in

$$\sum_{i=1}^{N} \varphi(t)y(t) = \sum_{i=1}^{N} \varphi(t)\psi^2(t|\theta)\theta$$

(15)

Because $\varphi(t)$ has been defined by the previous input/output measurement, all the parameters for the ARX model can be calculated using Eq. (16):

$$\hat{\theta} = \left[\sum_{i=1}^{N} \varphi(t)\varphi^2(t|\theta) \right]^{-1} \sum_{i=1}^{N} \varphi(t)y(t)$$

(16)

The goal of system identification is to obtain a transfer function that predicts the output using input of the system reliably. From a given set of experimental data, the modeled data $\hat{y}(t|\theta)$ are compared with the experimental data $y(t)$ to minimize the error between the two data sets. Once $\hat{\theta}$ is calculated, the transfer function can be obtained from Eq. (10).

C. Structural Degradation Identification Using the Damage Index

The accuracy and sensitivity of the defined damage index is critical for identifying matrix cracks in composites. Ideally, a composite structure without damage can be modeled as a linear system. However, composite structures present more nonlinear properties when nonvisible damages, such as matrix cracks, are introduced [20–22]. Although the ARX model can be expressed as shown in Eq. (6), an error term $\epsilon(t)$ should be introduced to this model for the reconstruction accuracy. The modified ARX model can be expressed as

$$y(t) + a_1y(t-1) + \cdots + a_ny(t-n) = b_1x(t-1) + \cdots + b_mx(t-m) + \epsilon(t)$$

(17)

It is assumed that the error between the measurement and estimation obtained by the ARX model is caused mainly by the nonlinear properties of matrix cracking in composites. The measurement noise is assumed to be uncorrelated with the input signal and can be ignored. The estimation error becomes larger when more nonlinearities due to matrix cracks are introduced. A clear definition of estimation error ϵ_i at storage state s is expressed as

$$\epsilon_i = y_i(t) + \sum_{i=1}^{n} a_{i,j}y_j(t-i) - \sum_{j=1}^{m} b_{j,i}x_j(t-j)$$

(18)

where $a_{i,j}$ and $b_{j,i}$ are the parameters of the ARX model at storage state s. $y_i(t-j)$ ($i = 0, 1, \ldots, n$) are the sensor output measurements at storage state s, and $x_j(t-j)$ ($j = 1, 2, \ldots, m$) are the sensor input measurements at storage state s. The order of the ARX model is chosen by balancing the calculation error and cost. Once the order of the ARX model is chosen, a damage index can be defined as

$$\text{DI}_i = \sqrt{\frac{[\epsilon_i - \epsilon_0]^2}{\epsilon_0^2}}$$

(19)

where ϵ_0 is the estimation error for the referred initial storage state. When the healthy state of the structures is known, ϵ_i is the ith storage state with respect to the healthy state ($s = 0$). However, when the healthy state is unknown, the defined damage index DI, can still be used to compare the later storage state with the reference storage level (the first available storage state).

III. Experimental Tests

To validate the system-identification-based SHM framework, a flattening and wrapping experiment was performed on composite booms, which were supplied by the U.S. Air Force Research Laboratory, Space Vehicles Directorate. The materials used for the composite booms are CFRP in unidirectional tape and plain-weave-fabric forms, both using Hexcel® IM7 fibers and M72 resin. The boom is composed of two flanges. The cross section of the boom is shown in Fig. 3. The stacking sequence of each flange is $[0°/0°] / (\pm 45°/0°/0°)$ (0° is the long axis of the boom). These two laminates overlap at the ridge to form a $[0°/0°/0°/0°/0°]$, stacking sequence. The boom specimen was instrumented with four MFC transducers (Smart Material Corp., model M 2814 F1), as shown in Fig. 4. To obtain proper bonding conditions between the boom and the sensors, the sample surface was prepared with abrasive paper and cleaned with a cotton-tipped applicator. Stewart-MacDonald super glue (model 20-X) was used as the adhesive. The outgassing properties of this particular adhesive are not critical at the stage of research, but consideration should be addressed when applied to systems containing optical payloads where outgassing is a concern.

The primary source of degradation to the boom structure occurs during the flattening and wrapping process of the boom around a hub that is used to store the boom before deployment. The extent of matrix cracking and structural degradation due to flattening and wrapping the boom around the hub can be critical in the system response. As the stiffness changes due to matrix cracking, the system’s response will be affected. The structural degradation incurred by storing the structure has been simulated experimentally using a wrapping fixture, as shown in Fig. 5. The wrapping fixture consists of a 14-in.-diam hub around which the boom sample is wound. This fixture was constructed to test 24 in. samples. The boom was clamped, as shown in Fig. 5a with a 2-in.-long clamping surface, flattening the clamped end of the boom to the hub. The boom was then wrapped taut around the center hub and clamped at the preset location. The rate of wrapping was approximately 1 in./s, which was necessary to ensure that the boom flattened properly and to maintain as little gap as possible from the center hub. Similar wrapping and deploying rates were used by the CFRP boom and solar sail.

Fig. 3 Cross section of the AFRL composite boom.
membrane of the synthetic aperture radar satellites developed by DLR [12].

The experimental procedure is shown in Fig. 6. Two substeps were completed before a new storage state was generated. MFC active sensing data were collected first. One MFC was used as the actuator to excite the boom specimen and the response was captured by the other three MFC transducers using a low-frequency sweep signal. The boundary condition of the boom specimen was traction-free. Modal analysis was conducted experimentally using a scanning-head laser vibrometer (Polytec, Inc., model VCS-310) and a vibration shaker (model VTS 100). The storage states were generated six times by flattening and wrapping the boom specimens to different arc lengths, as shown in Fig. 7. Storage state 1 was wrapping the specimen around the hub to introduce matrix cracks up to the section indicated (arc length of 5 in.). The boom specimen was clamped at the preset location for 30 s before being deployed to its initial position. In the second storage state, both sections 1 and 2 were used (arc length of 11 in.), and in storage states 3 to 6, sections 1–3 were all...
transducers. A broadband sweep signal with frequency varying from
achieved.

cracks are induced into the sample. After
ve times, the
first resonant mode shows the clearest shift after matrix
attening and wrapping the
first resonant mode stops decreasing, which
means matrix-cracking damage ceases to increase in the composite-

Fig. 7 Six storage states for the composite-boom flattening/wrapping test.

Fig. 8 Experimental setup of vibration modal analysis.

used (arc length of 17 in.) to introduce matrix cracks to the boom
structure. After a new storage state was generated, the boom speci-
men was fully deployed to the original position.

Current nondestructive evaluation techniques, such as flash
thermography and ultrasonic scan, can hardly detect matrix cracking
in composites. However, matrix cracking and structural stiffness
degradation can be detected by the shift of resonant modes using
vibration modal analysis. To validate the matrix cracking induced by
flattening and wrapping of the boom, the first three resonant modes
were measured experimentally through a scanning-head laser
 vibrometer coupled with a vibration shaker. The experimental setup
of vibration modal analysis is shown in Fig. 8. Three steps were used
to ensure that the laser points were in the exact locations during each
scan. First, the length from the free end of the boom to the custom-
made fixture was the same in each scan. Next, the sample was
clamped at the same position on the shaker according to the marks
drawn on the shaker fixture. Finally, the vibrometer scan head was
fixed and the position of the boom on the shaker was adjusted slightly
using the reference points so that each scan was started from the same
point, as shown in Fig. 8. The shift of first resonant mode can be seen
in Fig. 2. The first resonant mode shows the clearest shift after matrix
cracks are induced into the sample. After flattening and wrapping the
sample five times, the first resonant mode stops decreasing, which
means matrix-cracking damage ceases to increase in the composite-
boom sample. The equilibrium state of the boom specimen is
achieved.

A 48-channel data acquisition system (National Instruments
model PXI 1042) was used for active sensing using the MFC
transducers. A broadband sweep signal with frequency varying from
10 to 1 kHz was used for active sensing of the MFCs. The excitation
signal is shown in Fig. 10a. A representative sensor signal from
MFC 4 at the initial state is shown in Fig. 10b. The power spectral
density plots of both the input and output signals at the healthy state
and six storage states are shown in Fig. 11. With constant input
signals, the differences of the power spectral density at different
storage states are not clear. The frequency-response method and the
ARX model are used for more sensitive structural degradation
identification.

IV. Results and Discussion

A. Frequency-Response Method of Input/Output MFC Transducers

The frequency-response method can be used to analyze the input/
output relationship and to nonparametrically understand the key
aspects of the system before moving to the more complex parametric
modeling stages. The information obtained is the basis for identi-
fying parametric transfer-function models. In this paper, a SISO
frequency-response method is used to analyze the change at different
storage states. The input signals are collected from MFC 1 and output
signals are collected from MFC 4. The sensor input/output signals
cover the entire damage area and can be used for global damage
characterization. The plots for amplitude and phase versus frequency,
which can be calculated using Eqs. (1–5), are showed in Fig. 12.

In Eq. (3) the frequency response is determined from the ratio of
the cross-correlation spectrum estimate $S_{yx}(j\Omega)$ and autocorrelation
spectrum estimate $S_{xx}(j\Omega)$. The amplitude change of the frequency
response at a relatively low-frequency range (from 10 to 200 Hz) is
mainly caused by the presence of nonlinear properties when matrix
cracks are introduced. The understanding of nonlinearity in damaged
composite structures helps to choose a proper model for the transfer-
function estimation and design the damage index based on the
estimated damage index.

The frequency-response method provides the information to select
frequency ranges for the input/output pair to include only relevant
data. As shown in Fig. 12, the amplitude has a clear response at a low-
frequency range from 10 to 200 Hz. The phase also has obvious
responses in the same frequency range. This quick analysis helps to
choose the frequency range, which provides useful data for the
transfer-function estimation.

A key aspect for the frequency-response method is the direct and
accurate identification of time delays. The linear relationship
between the time delay τ and frequency-response phase shift with
frequency ω (rad/s) is expressed as

$$\delta = -\tau\omega$$

where δ is the angle of phase shift at frequency ω. From the
frequency-response plot shown in Fig. 12, the phase shift after
storage state 2 has a clear change in the frequency range of 10 to
200 Hz, which indicates the change of time delay due to induced damage. It can be used as a feature to quickly demonstrate the existence of damage in the composite booms. This also indicates that the time delays are more sensitive in the specific frequency range as more damage is introduced. In the selected sensing frequency range, the velocities of the elastic waves are more sensitive to the change of structural stiffness that is caused by matrix cracking. Since the velocity of elastic wave is a function of the stiffness, the structural stiffness degradation can be estimated using the velocity change of elastic waves in the future research.

B. Transfer-Function Estimation and Order Selection of ARX Model

By carefully choosing the order of the ARX model, SISO transfer functions can be estimated accurately and efficiently. As shown in Eq. (18), the order of the ARX model is the sum of the order of output, n, and the order of input, m. The value of m and n can be different. The criterion of selecting the proper order number is to get the most reasonable estimation with the smallest order number. To find the optimized order number, a set of estimations is needed. Experimental measurements from MFC 1 and MFC 4 at the healthy state are used as the input/output pair for the order analysis. As shown in Fig. 13, the vertical axis, which is called the unexplained output variance, is the ARX model estimation error for the number of orders shown in the horizontal axis. As the order number increases, the estimation error decreases. The order number of the ARX model is the main influence of the estimation error, but each value of m and n is also considered in order to get the minimum order number. Although the estimation accuracy can be improved with a high-order ARX model, the calculation cost increases dramatically. Ideally, by choosing an ARX model with an infinite-order number, the estimation error can be completely removed. However, at the same time, the calculation cost will be infinitely high. After the order number increases up to 40, the slope of estimation error decreases dramatically. In this paper, the order of the ARX model is chosen as 40. In this paper, when the total order of ARX model ($m + n$) keeps constant and input order m varies from 23 to 33, the estimation error remains approximately constant. Such constancy indicates that total model order ($m + n$) is the main influence parameter of the model performance. The ARX model has the smallest estimation error when input order m and output order n are chosen as 28 and 12, respectively. An ARX (28,12) is used for the ARX model.

To display the accuracy of the chosen model, one pair of experimental input/output signal collected from MFCs 1 and 4 is used to train and validate the ARX (28,12) model. The first half of the signal in the time domain is used to train the model and the second half of the measured output is compared with the simulated output. The comparison of simulated output signal and experimental output
signal can be seen in Fig. 14. The experimental output signal can be accurately simulated by an ARX (28,12) model.

C. Storage-State Identification Using Damage Index

To evaluate the storage state of the entire composite-boom sample subject to flattening and wrapping around the circular hub, both global damage estimation and local damage estimation are carried out. Global damage estimation uses MFCs 1 and 4, which cover the entire boom. The damage index obtained from global damage estimation shows the average damage condition along the entire boom. In Fig. 15, the estimation starts from the healthy state at which the damage index is zero. However, as the flattening and wrapping induces matrix cracking into the boom, the damage index grows gradually. Global structural degradation estimation provides a clear trend of damage growth. Note that the damage caused by matrix cracking is introduced into the boom structure gradually in the first five steps. However, an equilibrium state was detected in step 6. The feature trend obtained from damage-index analysis can be validated by the vibration modal shift analysis, which is shown in Fig. 9.

More damage accumulates in the region between MFCs 1 and 2, as this area has been wrapped six times during the experiment. The global structural degradation estimation cannot highlight such local storage states. To concentrate on the hot spot between MFC transducers, local damage estimation analysis is used. The local storage-state estimation for the region between MFCs 1 and 2 is shown in Fig. 16. This region is close to the clamping area of the boom specimen. The damage was induced since step 1. In the first three steps, it is noted that the damage index has a clear increase, which indicates the matrix-cracking propagation during multiple flattening and wrapping procedures. However, the damage index of this region reaches an equilibrium state after step 4. Compared with the global estimation results in Fig. 15, the local storage-state estimation is more sensitive to the matrix-cracking damage. The reason is that the first two storage states contain both healthy and damaged sections in the monitored area. The sensitivity of the
damage index decreases as long as the reference becomes larger. Generally speaking, the damage index should provide more sensitivity for local storage-state estimation.

The local storage-state estimation for the section between MFCs 2 and 3 is shown in Fig. 17. As the region was not used in step 1, the damage index keeps constant in this step. Note that the matrix cracking originated in the section between MFCs 2 and 3 in steps 2, 3, and 4. The clear feature trend can be seen in Fig. 17. A similar trend for the damage parameters in the region between MFCs 2 and 3 can be seen as observed from the region between MFCs 1 and 2. An equilibrium state in the local section was achieved after flattening and wrapping the boom specimen three times and the local damage index does not show significant increase in steps 5 and 6. For the region between MFCs 3 and 4, in steps 1 and 2, the local damage index stays near zero, as no severe matrix cracking was introduced, which also indicates a healthy local structural condition, as shown in Fig. 18. The first local matrix cracking was induced in step 3, and the damage-index features keep increasing in steps 3, 4, and 5. However, because the boom specimen reaches an equilibrium condition, the damage index does not increase significantly in step 6. Because all the three local regions reach the equilibrium state in step 6, the global damage index in this step also indicates equilibrium in this step.

V. Conclusions

The system-identification-technique-based structural health monitoring approach is proposed to investigate damage caused by matrix cracking in composite boom subject to flattening and wrapping around a circular hub. Both the frequency-response method and autoregressive with exogenous input model are used to perform single-input/single-output transfer-function estimation and storage-state identification. A flexible macrofiber composite actuator excites the boom specimen and response was captured by three macrofiber composite sensors using low-frequency sweep signals to provide experimental input/output data. The frequency-response method is used to nonparametrically analyze the relationship between input/output sensor signals and select a relevant frequency range. It also provides useful information for the transfer-function analysis using the autoregressive with exogenous input model. The order of the autoregressive with exogenous input model is decided by considering both the estimation accuracy of the model and the calculation cost, and the autoregressive with exogenous input (28, 12) model is chosen. The order selection of autoregressive with exogenous input model is validated by comparing the simulated and experimental output signals.

The damage-index estimation, using the residual error of the autoregressive with exogenous input model, provides a clear trend of global damage growth, because the composites will present nonlinear structural properties when matrix cracks are introduced. An equilibrium state for the composite boom was achieved after flattening and wrapping the boom specimens five times. Local storage-state estimation is completed between each macrofiber composite sensor. The newly defined damage index is more sensitive in a localized region, but still provides global state estimation for the entire length of the composite booms. Results show that storage-state estimation using an autoregressive with exogenous input model correlates with the trends seen from first natural-mode shifts using vibration modal analysis techniques. The structural health monitoring system using microfiber composites and autoregressive with exogenous model is a more feasible method of acquiring dynamic characteristics on orbit, as the size, weight, and power requirements are significantly less than with the traditional vibration approach. For future research, the detection of the equilibrium state can be used for the prelaunch quality assurance testing to ensure that a boom structure at equilibrium is inspected before launch. Further research is also needed for qualifying installation methods and hardware for the space environment and analyzing the effect of space conditions on sensing performance.

Acknowledgments

This research is supported by U.S. Air Force Research Laboratory (AFRL), Space Vehicles Directorate, grant FA94530910316. The authors also thank Whitney Reynolds of AFRL for his generous help in this project.

References

G. Agnes
Associate Editor
This article has been cited by:

2. Brandi N. McPherson, Jeffrey L. Kauffman. Dynamics and Estimation of Origami-Inspired Deployable Space Structures: A Review. [Citation] [PDF] [PDF Plus]

3. Siqi Wang, Tiffany Tran, Liangzhong Xiang, Yingtao Liu. Non-Destructive Evaluation of Composite and Metallic Structures using Photo-Acoustic Method. [Citation] [PDF] [PDF Plus]

7. Salvador Villegas, Xiaoou Li, Wen Yu. Detection of building structure damage with support vector machine. [Crossref]

8. Jin Zou, Yingtao Liu, Aditi Chattopadhyay, Lenore Dai. A self-sensing fiber reinforced polymer composite using mechanophore-based smart polymer. [Crossref]

9. Yingtao Liu, Bach Duong. A supervised outlier analysis for risk assessment in composite wing structures 94370E. [Crossref]

10. Xiaou Li, Wen Yu. Data Stream Classification for Structural Health Monitoring via On-Line Support Vector Machines. [Crossref]

11. Saptarshi Bandyopadhyay, Soon-Jo Chung, Fred Hadaegh. Attitude Control and Stabilization of Spacecraft with a Captured Asteroid. [Citation] [PDF] [PDF Plus]

12. Luke Borkowski, Aditi Chattopadhyay. Electromagnetomechanical elastodynamic model for Lamb wave damage quantification in composites 90641B. [Crossref]

20. Yingtao Liu, Masoud Yekani Fard, Aditi Chattopadhyay. A Statistical Approach to Investigate Temperature Effects on Guided Wave Based Structural Health Monitoring. [Citation] [PDF] [PDF Plus]

21. Luke Borkowski, Masoud Yekani Fard, Aditi Chattopadhyay. Modeling Lamb Wave Propagation for Damage Detection in a Complex Metallic Aerospace Structural Component. [Citation] [PDF] [PDF Plus]

22. Jinjun Zhang, Kuang Liu, Aditi Chattopadhyay. A Statistical Volume Element Based Approach to Multiscale Modeling of Fatigue Crack Formation in AA 2024-T351. [Citation] [PDF] [PDF Plus]